An anti-classification theorem for minimal homeomorphisms on the torus

Bo Peng (McGill)

DDC, 2025.9.30

A classification?

Classification problems are of the following form:

Given an analytic equivalence relation E on a standard Borel space X, determine whether two point $x, y \in X$ are equivalent.

00000000000

Classification VS anti-classification

The conjugacy of complex matrices can be classified by the eigenvalues of the matrix.

Let X and Y be two Polish spaces. E and F be two equivalence relations on X and Y, respectively.

Classification VS anti-classification

00000000000

Let X and Y be two Polish spaces. E and F be two equivalence relations on X and Y, respectively.

Definition

A **Borel reduction** from E to F is a Borel function f from X to Y, such that for all $a,b\in X$.

$$aEb \Leftrightarrow f(a)Ff(b)$$

Let X and Y be two Polish spaces. E and F be two equivalence relations on X and Y, respectively.

Definition

A **Borel reduction** from E to F is a Borel function f from X to Y, such that for all $a,b\in X$.

$$aEb \Leftrightarrow f(a)Ff(b)$$

If a Borel reduction from E to F exists, we would say E is **Borel reducible** to F and denote by $E \leq_B F$. If we also have $F \leq_B E$ then we use the notation $E \sim_B F$, in this way, classifying E is as complicated as classifying F.

Classification VS anti-classification

0000000000

We want to study equivalence relation $E.\ F$ is a "well-studied" equivalence relation. We reduce E to F.

An anti-classification?

Classification VS anti-classification

000000000000

We want to study equivalence relation F. E is an "impossible" equivalence relation. We reduce E to F.

Impossibility?

000000000000

Classification VS anti-classification

We need some benchmarks to measure the impossibility of a problem.

Numerical invariants

Classification VS anti-classification

000000000000

An equivalence relation E is called **smooth** or is classifiable by numerical invariants, if it is Borel reducible to $=_{\mathbb{R}}$ where $=_{\mathbb{R}}$ denotes the equality relation on \mathbb{R} .

Countable equivalence relation

A Borel equivalence relation is **countable** if every equivalent class is countable.

 E_0 is an equivalence relation defined on 2^{ω} as follows:

$$xE_0y$$
 if $\exists n \forall m \geq n \ x(m) = y(m)$

Harrington-Kechris-Louveau Theorem

Let E be a Borel equivalence relation, then either E is smooth or E_0 is continuously reducible to E.

Classification VS anti-classification

000000000000

An equivalence relation is **Borel** if the equivalence relation is a Borel subset in the product space.

Borel equivalence relations

An equivalence relation is **Borel** if the equivalence relation is a Borel subset in the product space.

If an equivalence relation is not Borel, then we can not describe this classification by using inherently **countable** information.

Algebraic invariants

Definition

An equivalence relation is classifiable by countable structures if it is Borel reducible to an S_{∞} action. Where S_{∞} denotes the infinite permutation group.

Algebraic invariants

Definition

An equivalence relation is classifiable by countable structures if it is Borel reducible to an S_{∞} action. Where S_{∞} denotes the infinite permutation group.

If an equivalence relation is not classifiable by countable structures, it is impossible to classify it by any algebraic invariants.

Classification VS anti-classification

00000000000

A **complete** element in a partially ordered class is the most complicated element in that class.

For Polish group actions, S_{∞} actions, countable Borel equivalence relations, complete elements exists.

Figure 2: Basic regions of complexity

Figure: A picture from Foreman

Dynamical system

We care about the following two types of systems:

- 1. (X, μ, T) where (X, μ) is a standard probability space and $T \in MPT(X, \mu).$
- 2. (X, f) where X is a compact metric space and $f \in \operatorname{Homeo}(X)$.

Figure: von Neumann

Statistical behavior

von Neumann suggested classifying dynamical systems by their statistical behaviors.

Conjugacy of MPTs

Definition

Two measure-preserving transformations (MPTs) T, S are conjugate if there exists another MPT, H, such that $HTH^{-1} = S$.

What is preserved?

Integral, ergodicity, . . .

Qualitative behavior

Figure: Smale

Qualitative behavior

Smale suggested classifying dynamical systems by their **qualitative behaviors**.

Topological conjugacy

Definition

Two systems (X,f) and (Y,g) are **topological conjugacy** if there exists a homeomorphism $h:X\to Y$ such that

$$h \circ f = g \circ h.$$

What is preserved?

Fixed points, asymptotic pairs, affine structure of invariant measures, . . .

Let $T \in MPT(X, \mu)$, T is ergodic if every T-invariant subset of X has measure either 1 or 0.

Definition

A system (X, f) is called minimal if there is no proper subsystems of (X, f). It is equivalent with the condition that all orbits are dense.

Ergodic decomposition theorem

Every measure-preserving transformation could be written as an integral of ergodic measure preserving transformations

Why minimality?

Existence of minimal set

Every topological dynamical system has a minimal subsystem.

Ergodic transformations and minimal systems are building blocks of general systems.

Two programs regarding those classifications

The isomorphism problem (von-Neumann, 1936) Classify MPTs up to conjugacy.

Two programs regarding those classifications

The isomorphism problem (von-Neumann, 1936)

Classify MPTs up to conjugacy.

Smale's program

Classify smooth and topological dynamical systems up to topological conjugacy.

Successful examples in ergodic theory

Theorem (Ornstein)

Two Bernoulli shifts are measure conjugate if and only if they have the same entropy.

Successful examples in ergodic theory

Theorem (Ornstein)

Two Bernoulli shifts are measure conjugate if and only if they have the same entropy.

Theorem (Von-Neumann)

Two MPTs with discrete spectrum are conjugate if and only if their associated Koopman operators have the same eigenvalue. (Reducible to $=_{\mathbb{R}}^+$).

Ergodic theory

Classification is impossible in general!

Classification is impossible in general!

Theorem (Hjorth, 2000)

The conjugacy relation of measure systems is not Borel. The conjugacy relation of ergodic transformations is not classifiable by countable structures.

Classification is impossible in general!

Theorem (Hjorth, 2000)

The conjugacy relation of measure systems is not Borel. The conjugacy relation of ergodic transformations is not classifiable by countable structures.

Theorem (Foreman and Weiss, 2003)

The conjugacy action of MPTs on ergodic transformations is turbulent, thus any generic classes are not classifiable by countable structures.

Classification is impossible in general!

Theorem (Hjorth, 2000)

The conjugacy relation of measure systems is not Borel. The conjugacy relation of ergodic transformations is not classifiable by countable structures.

Theorem (Foreman and Weiss, 2003)

The conjugacy action of MPTs on ergodic transformations is turbulent, thus any generic classes are not classifiable by countable structures.

Theorem (Foreman, Rudolph and Weiss, 2011)

The conjugacy relation of ergodic MPTs is not Borel.

Theorem (Foreman and Weiss, 2021)

Conjugacy of measure preserving diffeomorphisms on the 2-torus is not Borel.

Theorem (Gerber and Kunde, 2025)

Kakutani equivalence of ergodic transformations is not Borel.

Theorem (Foreman, 2025+)

Isomorphism of countable graphs is Borel reducible to conjugacy of ergodic diffeomorphisms on the 2-torus.

Cantor minimal systems

Definition

A Cantor system is a topological dynamical system whose underlying space is the Cantor set.

Cantor minimal systems

Definition

A **Cantor system** is a topological dynamical system whose underlying space is the Cantor set.

Topological full groups

Let (\mathcal{C},f) be a Cantor system. Topological full group [f] is a countable group determined only by f. The map sends f to [f] is continuous.

Two systems (X, f) and (Y, g) are **flip conjugate** if (X, f) is conjugate with (Y, g) or (Y, g^{-1}) .

Flip conjugacy

Two systems (X, f) and (Y, g) are **flip conjugate** if (X, f) is conjugate with (Y, g) or (Y, g^{-1}) .

Theorem (Giordano-Putnam-Skau, 1999)

Two Cantor minimal systems are flip conjugate if and only if their topological full groups are isomorphic.

topological dynamics

Flip conjugacy

Two systems (X, f) and (Y, g) are flip conjugate if (X, f) is conjugate with (Y, q) or (Y, q^{-1}) .

Theorem (Giordano-Putnam-Skau, 1999)

Two Cantor minimal systems are flip conjugate if and only if their topological full groups are isomorphic.

We find an algebraic invariant!

Classification VS anti-classification

The conjugacy relation of Cantor systems is a complete S_{∞} action.

Theorem (Deka, García-Ramos, Kasperzak, Kunde, Kwietniak, 2024+)

The conjugacy relation of Cantor minimal systems is not Borel.

Classification VS anti-classification

Let f be a minimal homeomorphism on the circle S^1 . Let F be the lift of f on \mathbb{R} .

Theorem (Poincaré, 1907)

- 1. The limit of $\frac{F^n(x)-x}{n}$ exists and independent of the choice of $x \in \mathbb{R}$. We call this number the **rotation number** of f.
- Two minimal homeomorphisms on the circle are conjugate if and only if they have the same rotation number.
- 3. The map takes a minimal homeomorphism to its rotation number is continuous.

Classification VS anti-classification

Let f be a minimal homeomorphism on the circle S^1 . Let F be the lift of f on \mathbb{R} .

Theorem (Poincaré, 1907)

- 1. The limit of $\frac{F^n(x)-x}{n}$ exists and independent of the choice of $x \in \mathbb{R}$. We call this number the **rotation number** of f.
- Two minimal homeomorphisms on the circle are conjugate if and only if they have the same rotation number.
- 3. The map takes a minimal homeomorphism to its rotation number is continuous.

There is a numerical invariant.

Theorem (Foreman and Gorodetski, 2022)

Let M be a manifold with dimension n, then the topological conjugacy relation of smooth diffeomorphisms on M is

- 1. not smooth if $n \geq 2$.
- 2. not Borel if $n \geq 5$.

In general?

Theorem (Foreman and Gorodetski, 2022)

Let M be a manifold with dimension n, then the topological conjugacy relation of smooth diffeomorphisms on M is

- 1. not smooth if $n \geq 2$.
- 2. not Borel if $n \geq 5$.

Foreman and Gorodetski, Vejnar independently generalized non-Borelness to all manifolds.

Algebraic invariants?

Question (Foreman and Gorodetski)

Does topological conjugacy of diffeomorphisms on a given manifold reduce to an S_{∞} action?

Theorem (P. 2025)

For any manifold M with dimension greater than equal to 2, the topological conjugacy of diffeomorphisms on M is not classifiable by countable structures.

Theorem (Hjorth, 1999)

The conjugacy of homeomorphisms on the circle is a complete S_{∞} action. In particular, the conjugacy relation of diffeomorphisms on the circle is classifiable by countable structures.

Hjorth's result

Theorem (Hjorth, 1999)

The conjugacy of homeomorphisms on the circle is a complete S_{∞} action. In particular, the conjugacy relation of diffeomorphisms on the circle is classifiable by countable structures.

Theorem (Hjorth, 1999)

The conjugacy of homeomorphisms on the square is not classifiable by countable structures.

a torus? It seems natural to attempt to generalise Poincaré's result to higher dimensions. However, so far no results in this direction exist. Partly, this is

Figure: comment in Jäger's paper, Linearization of conservative toral homeomorphisms, 2008 Invent.math

a torus? It seems natural to attempt to generalise Poincaré's result to higher dimensions. However, so far no results in this direction exist. Partly, this is

Figure: comment in Jäger's paper, Linearization of conservative toral homeomorphisms, 2008 Invent.math

A natural question:

Can we prove any (anti)classification results for minimal homeomorphisms on the torus?

Foreman's question:

Open Problem 14. Does E_0 reduce to the collection of topologically minimal diffeomorphisms of the 2-torus with the relation of topological conjugacy? What about topologically transitive diffeomorphisms?

Theorem (P. 2025+)

 E_0 is Borel reducible to the topological conjugacy of minimal diffeomorphisms on the torus.

Let $\alpha, \beta \in \mathbb{T}$ which are rationally independent. Define

$$T_{\alpha,\beta}:\mathbb{T}^2\to\mathbb{T}^2$$

$$T_{\alpha,\beta}(x,y) = (x + \alpha, y + \beta).$$

Then $T_{\alpha,\beta}$ is minimal.

By Mitch Richling

A fact from dynamical system

Let $(\alpha, \beta), (\alpha', \beta') \in \mathbb{T}^2$, two minimal rotations $T_{\alpha, \beta}, T_{\alpha', \beta'}$ are conjugate iff $\exists A \in GL_2(\mathbb{Z})$ such that $A(\alpha, \beta) = (\alpha', \beta')$.

A fact from dynamical system

Let $(\alpha, \beta), (\alpha', \beta') \in \mathbb{T}^2$, two minimal rotations $T_{\alpha, \beta}, T_{\alpha', \beta'}$ are conjugate iff $\exists A \in GL_2(\mathbb{Z})$ such that $A(\alpha, \beta) = (\alpha', \beta')$.

Proof

Let h be a conjugacy between two rotations. We may assume h(0,0)=(0,0), thus h is a group isomorphism between $(n\alpha,n\beta)$ and $(n\alpha', n\beta')$. Since the orbit is dense, we know h is a self-isomorphism on \mathbb{T}^2 . Thus, the lift of h on the plane, H, is also a self-isomorphism, since H is a lift, H maps \mathbb{Z}^2 to \mathbb{Z}^2 . Thus, $H \in \mathrm{GL}_2(\mathbb{Z}).$

A fact from group theory \mathbb{F}_2 is a subgroup of $GL_2(\mathbb{Z})$.

A fact from group theory

 \mathbb{F}_2 is a subgroup of $GL_2(\mathbb{Z})$.

A fact from measure theory

The action of $GL_2(\mathbb{Z})$ on the 2-torus preserves Lebesgue measure.

A classification in general?

Hjorth proved the conjugacy relation of $\mathrm{Homeo}([0,1]^2)$ is not classifiable by countable structures. But Hjorth's proof uses fixed points in an essential way.

The topological conjugacy relation of minimal homeomorphisms on 2-torus is not classifiable by countable structures.

The contribution of Anosov and Katok

The approximation by conjugation(AbC) method was invented by Anosov and Katok in 1970s to construct new dynamical systems.

How it works on the 2-torus?

Let R be a minimal rotation on the 2-torus and h_n be a sequence of homeomorphisms on the 2-torus. Take the limit of $h_n R h_n^{-1}$.

Asymptotic pairs

In a topological dynamical system (X,d,f), two points $x,y\in X$ are **asymptotic** if the limit of $d(f^nx,f^ny)$ goes to 0.

Į

This is an equivalence relation! And it is preserved under conjugacy!

No fixed points but...

Take $X = \mathbb{T}^2$. By adding conditions to h_n , for all $x \in \mathbb{T}^2$, the number of elements in the asymptotic class of x is either finite or continuum.

Ш

The elements with continuum asymptotic class must be mapped to elements with continuum asymptotic class.

Ш

Those points can play the same role as fixed points.

Theorem (Sabok, 2016)

The affine homeomorphism relation of Choquet simplices is a complete orbit equivalence relation.

Open Question

Theorem (Sabok, 2016)

The affine homeomorphism relation of Choquet simplices is a complete orbit equivalence relation.

Theorem (Foreman and Weiss, 2023+)

All Choquet simplices can be realized as the set of invariant measures of a Lebesgue measure preserving diffeomorphism on the 2-torus.

Theorem (Sabok, 2016)

The affine homeomorphism relation of Choquet simplices is a complete orbit equivalence relation.

Theorem (Foreman and Weiss, 2023+)

All Choquet simplices can be realized as the set of invariant measures of a Lebesgue measure preserving diffeomorphism on the 2-torus.

Question

Are there any relations between those two theorems?

Thanks.